Search results

Search for "oxygen evolution reaction" in Full Text gives 14 result(s) in Beilstein Journal of Nanotechnology.

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • composite acted as an electrocatalyst in the oxygen evolution reaction. Morphological studies confirmed that the added particles were incorporated and, in the case of a higher concentration of cCB particles, also bound to the surface of the structure of the hydrogel matrix. The produced composite materials
  • catalytic activity of the electrode in the oxygen evolution reaction. The use of a hydrogel as a matrix to suspend the catalyst particles, and thus increase their availability through the electrolyte, seems to be an interesting and promising application approach. Keywords: electrical properties; energy
  • ; hydrogel; hydrogen; oxygen evolution reaction; polymer composites; Introduction Hydrogels are defined as a group of polymeric materials with an insoluble hydrophilic structure which gives them the ability to absorb and hold large amounts of water (up to over 99 wt %) in their three-dimensional network
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • Cracow, Poland 10.3762/bjnano.14.34 Abstract In this work, the specific role of the addition of graphene oxide (GO) to state-of-the-art nickel–iron (NiFe) and cobalt–nickel–iron (CoNiFe) mixed oxides/hydroxides towards the oxygen evolution reaction (OER) is investigated. Morphology, structure, and OER
  • catalysts specifically influenced the process. The improvement in the OER by NiFe-GO results mainly from the structure of NiFe and the electroactive surface area of GO. Keywords: electrocatalysts; electrodeposition; energy; hydrogen; oxygen evolution reaction; Introduction Nowadays, the industrial
  • process is primarily the oxygen evolution reaction (OER) due to its sluggish kinetics resulting in a high overpotential and low efficiency [4]. To overcome this problem, robust anode electrode catalyst materials are required. Since the Ru- and Pt-based catalysts used so far for OER are made using limited
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • materials to separate water for creating clean fuels has been developed for about a decade [5][6]. Water splitting is carried out in solutions rich in H+ ions to the conduct hydrogen evolution reaction (HER) process or in rich OH− solutions for the oxygen evolution reaction (OER) process [7][8][9]. However
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Nanoarchitectonics of the cathode to improve the reversibility of Li–O2 batteries

  • Hien Thi Thu Pham,
  • Jonghyeok Yun,
  • So Yeun Kim,
  • Sang A Han,
  • Jung Ho Kim,
  • Jong-Won Lee and
  • Min-Sik Park

Beilstein J. Nanotechnol. 2022, 13, 689–698, doi:10.3762/bjnano.13.61

Graphical Abstract
  • from the metallic Li anode, leading to the formation of Li2O2 as the final discharge product. During the subsequent charge, Li2O2 can be reversibly decomposed to Li+ and O2 by the oxygen evolution reaction (OER) [3][4][5][6]. Considering these reaction mechanisms of LOBs, the cathode should have a
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2022

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • cobalt salt to the spinning solution [19][20][21][22]. Li et al. [19] investigated the activity of the material using a rotating ring disc and dilute 0.1 M KOH electrolyte. They found that the cobalt species were active in both oxygen evolution reaction (OER) and ORR. They also found that increasing
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries

  • Shengyu Jing,
  • Xu Gong,
  • Shan Ji,
  • Linhui Jia,
  • Bruno G. Pollet,
  • Sheng Yan and
  • Huagen Liang

Beilstein J. Nanotechnol. 2020, 11, 1809–1821, doi:10.3762/bjnano.11.163

Graphical Abstract
  • carbon is a promising cathode material for lithium–oxygen batteries. Keywords: electrocatalytic performance; lithium–oxygen batteries; N-doped carbon; nickel carbide; oxygen evolution reaction (OER); oxygen reduction reaction (ORR); specific capacity; Introduction Clean and sustainable renewable energy
  • , constant, on-demand, and reliable manner [3][4][5][6]. Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play critical roles in many clean energy storage and conversion devices (e.g., hydrogen produced from water splitting via water electrolyzers, hydrogen fuel cells, and metal–air
PDF
Album
Full Research Paper
Published 02 Dec 2020

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • approach yields improved mass activity (557 A·g−1 as compared to 80 A·g−1 at 0.39 V overpotential) on the basis of the noble-metal loading, as well as improved stability. Keywords: atomic layer deposition (ALD); oxygen evolution reaction (OER); redox flow battery; vanadium–air redox flow battery (VARFB
  • intermittency of renewable energy sources such as solar and wind power [1][2][3]. The water oxidation (oxygen evolution reaction, OER) and its reverse, the oxygen reduction reaction (ORR) represent the limiting half-reaction of regenerative fuel cells [4][5], of some batteries (metal–air batteries) [6][7] and
  • . The ALD method enables one to optimize the activity for the oxygen evolution reaction using low noble-metal loadings (48–66 μg·cm−2). In comparison to the electrodes prepared by thermal decomposition, the activity per gram of noble metal is increased by about 600% (557 A·g−1 at η = 0.39 V). Whether or
PDF
Album
Full Research Paper
Published 22 Jun 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • little investigated, albeit they are promising candidates for electrocatalysis, especially for the oxygen evolution reaction (OER). In this work, nickel nanoparticles (from Ni(COD)2) were supported on CTF-1 materials, which were synthesized from 1,4-dicyanobenzene at 400 °C and 600 °C by the ionothermal
  • ). Additionally, after accelerated durability tests of 2000 cycles, the material showed only a slight decrease in activity towards both OER and ORR, demonstrating its superior stability. Keywords: covalent triazine framework (CTF); electrocatalysis; nickel nanoparticles; oxygen evolution reaction; oxygen
  • reduction reaction; Introduction A worldwide increasing energy demand combined with the depletion of fossil fuels and environmental issues requires the development of new sustainable clean energy sources [1]. In many renewable energy conversion and storage systems, the oxygen evolution reaction (OER) and
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • of metallic Ru to Ru(II) and subsequently to Ru(IV) at the solid surface [10][67][68]. The oxygen evolution reaction starts beyond +0.8 V (E’ = +0.79 V) vs Ag/AgCl at pH 4 whereas electro-corrosion to dissolved species (H2RuO5, RuO4−) begins at +0.95 V (Figure 2) [10][11]. These restrictions force us
  • reaction [69][70][71]. Conclusion With this, we have established a novel type of nanostructured Ru/C composite electrode for the oxygen evolution reaction at pH 4 by laser-induced deposition. Laser irradiation of Ru3(CO)12 in 1,2-dichloroethane at 325 nm provides the first laser-induced coatings of hybrid
  • > 13 μm. The current density loss is even more pronounced for η = 0.20 V than for 0.10 V, which can be attributed to transport limitation, since diffusion becomes more limiting at faster catalytic turnover. A similar observation was already made for Fe2O3-coated Al2O3 nanopores in the oxygen evolution
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Thickness-dependent photoelectrochemical properties of a semitransparent Co3O4 photocathode

  • Malkeshkumar Patel and
  • Joondong Kim

Beilstein J. Nanotechnol. 2018, 9, 2432–2442, doi:10.3762/bjnano.9.228

Graphical Abstract
  • 4.5 mA·cm−2 with Ag nanowires [24]. Interestingly, a high photocurrent density of 29 mA·cm−2 can be achieved from Co3O4 under one-sun illumination (AM1.5G) suggesting a high (solar-to-hydrogen) efficiency of 35.8% [3]. Studies using Co3O4 as a catalyst have explored the oxygen evolution reaction (OER
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • splitting of water to molecular hydrogen via hydrogen and oxygen evolution reaction (HER and OER, respectively) are fundamental working mechanisms at the cathode of fuel cells, metal–air batteries and dye-sensitized solar cells [2]. However, the current working catalysts are based on expensive metals, such
PDF
Album
Review
Published 18 Jul 2018

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • plays a role. Mao et al. have prepared 3D crumbled cobalt–GO nanostructure hybrids which show both ORR and oxygen evolution reaction (OER) [171]. Wu et al. have prepared 3D Co3O4/flocculent graphene hybrids on Ni foam for supercapacitor applications as their nanocluster morphology synergistically
PDF
Album
Review
Published 24 Mar 2017

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • been proposed [9][31][35][36][37][38] as well as noble metals [39][40][41]. In 2011, McCloskey et al. attentively figured out that catalysts such as Pt, MnO2 or Au also promote the decomposition of the aprotic electrolyte rather than the oxygen evolution reaction (see also Figure 5) [42]. Although both
PDF
Album
Review
Published 23 Apr 2015

Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries

  • Mario Marinaro,
  • Santhana K. Eswara Moorthy,
  • Jörg Bernhard,
  • Ludwig Jörissen,
  • Margret Wohlfahrt-Mehrens and
  • Ute Kaiser

Beilstein J. Nanotechnol. 2013, 4, 665–670, doi:10.3762/bjnano.4.74

Graphical Abstract
  • a stepwise fashion leading to the formation of LiO2 and Li2O2 as shown in the chemical reactions below. Conversely, upon charging, the oxygen evolution reaction (OER) gives O2 and Li+ back via a 2-electrons reaction. The unsuitability of commonly used electrolytes for Li-ion batteries (e.g
PDF
Album
Full Research Paper
Published 18 Oct 2013
Other Beilstein-Institut Open Science Activities